If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+42x+315=0
a = 1; b = 42; c = +315;
Δ = b2-4ac
Δ = 422-4·1·315
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-6\sqrt{14}}{2*1}=\frac{-42-6\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+6\sqrt{14}}{2*1}=\frac{-42+6\sqrt{14}}{2} $
| -7=-4c+14 | | 3x2+12x-495=0 | | -65=6b=11 | | n/7+-23=-16 | | -7(v+-6)=49 | | 5(u-1)=3u+7-2(-5u-3) | | 4(w-83)=12 | | b—10=-15 | | 98=4b+22 | | -7=-4c+3 | | 5x-8=5+4x | | 4=g/5-1 | | n-43=-39 | | F(x)=2x^-4x+5 | | -74=6+8j | | 82=-2(1-6v) | | -36=-3c | | 82=10+4p | | 2b+7+b=10b-18-7b | | 2=q/4-4 | | -5/d-1=-6 | | 4.9+r=-9 | | 9(-2+x)=-27 | | 8(t-86)=88 | | 108=-2(2+8p) | | 2(3-h)-6=—5h | | 3(r+7)=57 | | -2.1=y-3.5 | | 3(1+p)=—5(p+1) | | 15x+3=10x-3 | | 1.8(g+18)=1.6g+3 | | 7y-10=7.59 |